深度學(xué)習(xí)模型的規(guī)模正在不斷擴(kuò)大,參數(shù)量可達(dá)萬(wàn)億級(jí)。這一趨勢(shì)意味著AI技術(shù)在可持續(xù)性上面臨著嚴(yán)峻的挑戰(zhàn),有必要探索硬件架構(gòu)底層的創(chuàng)新。神經(jīng)擬態(tài)計(jì)算是一種借鑒神經(jīng)科學(xué)研究的全新計(jì)算方法,通過(guò)存算一體和高細(xì)粒度的并行計(jì)算,大幅減少了數(shù)據(jù)傳輸。在本月舉行的聲學(xué)、語(yǔ)音與信號(hào)處理國(guó)際會(huì)議(ICASSP)上,英特爾發(fā)表的研究表明,Loihi 2在新興的小規(guī)模邊緣工作負(fù)載上實(shí)現(xiàn)了效率、速度和適應(yīng)性數(shù)量級(jí)的提升。

Hala Point在其前身Pohoiki Springs的基礎(chǔ)上實(shí)現(xiàn)了大幅提升,基于神經(jīng)擬態(tài)計(jì)算技術(shù)提升了主流、常規(guī)深度學(xué)習(xí)模型的性能和效率,尤其是那些用于處理視頻、語(yǔ)音和無(wú)線通信等實(shí)時(shí)工作負(fù)載的模型。例如,在今年的世界移動(dòng)通信大會(huì)(MWC)上,愛(ài)立信研究院(Ericsson Research)就展示了其如何將 Loihi 2神經(jīng)擬態(tài)處理器應(yīng)用于電信基礎(chǔ)設(shè)施效率的優(yōu)化。

Hala Point基于神經(jīng)擬態(tài)處理器Loihi 2打造,Loihi 2應(yīng)用了眾多類腦計(jì)算原理,如異步(asynchronous)、基于事件的脈沖神經(jīng)網(wǎng)絡(luò)(SNNs)、存算一體,以及不斷變化的稀疏連接,以實(shí)現(xiàn)能效比和性能的數(shù)量級(jí)提升。神經(jīng)元之間能夠直接通信,而非通過(guò)內(nèi)存通信,因此能降低整體功耗。

Hala Point系統(tǒng)由封裝在一個(gè)六機(jī)架的數(shù)據(jù)中心機(jī)箱中的1152個(gè)Loihi 2處理器(采用Intel 4制程節(jié)點(diǎn))組成,大小相當(dāng)于一個(gè)微波爐。該系統(tǒng)支持分布在 140544 個(gè)神經(jīng)形態(tài)處理內(nèi)核上的多達(dá) 11.5 億個(gè)神經(jīng)元和 1280 億個(gè)突觸,最大功耗僅為 2600 瓦。Hala Point還包括 2300 多個(gè)嵌入式 x86 處理器,用于輔助計(jì)算。

在大規(guī)模的并行結(jié)構(gòu)中,Hala Point集成了處理器、內(nèi)存和通信通道,內(nèi)存帶寬達(dá)每秒16PB,內(nèi)核間的通信帶寬達(dá)每秒3.5 PB,芯片間的通信帶寬達(dá)每秒5TB。該系統(tǒng)每秒可處理超過(guò)380萬(wàn)億次8位突觸運(yùn)算和超過(guò)240萬(wàn)億次神經(jīng)元運(yùn)算。

在用于仿生脈沖神經(jīng)網(wǎng)絡(luò)模型時(shí),Hala Point能夠以比人腦快20倍的實(shí)時(shí)速度運(yùn)行其全部11.5億個(gè)神經(jīng)元,在運(yùn)行神經(jīng)元數(shù)量較低的情況下,速度可比人腦快200倍。雖然Hala Point并非用于神經(jīng)科學(xué)建模,但其神經(jīng)元容量大致相當(dāng)于貓頭鷹的大腦或卷尾猴的大腦皮層。

在執(zhí)行AI推理負(fù)載和處理優(yōu)化問(wèn)題時(shí), Loihi 2神經(jīng)擬態(tài)芯片系統(tǒng)的速度比常規(guī)CPU和GPU架構(gòu)快50倍,同時(shí)能耗降低了100倍。早期研究結(jié)果表明,通過(guò)利用稀疏性高達(dá)10比1的稀疏連接(sparse connectivity)和事件驅(qū)動(dòng)的活動(dòng),Hala Point運(yùn)行深度神經(jīng)網(wǎng)絡(luò)的能效比高達(dá)15 TOPS/W,同時(shí)無(wú)需對(duì)輸入數(shù)據(jù)進(jìn)行批處理。批處理是一種常用于GPU的優(yōu)化方法,會(huì)大幅增加實(shí)時(shí)數(shù)據(jù)(如來(lái)自攝像頭的視頻)處理的延遲。盡管仍處于研究階段,但未來(lái)的神經(jīng)擬態(tài)大語(yǔ)言模型將不再需要定期在不斷增長(zhǎng)的數(shù)據(jù)集上再訓(xùn)練,從而節(jié)約數(shù)千兆瓦時(shí)的能源。

世界各地領(lǐng)先的學(xué)術(shù)團(tuán)體、研究機(jī)構(gòu)和公司共同組成了英特爾神經(jīng)擬態(tài)研究社區(qū)(INRC),成員總數(shù)超過(guò)200個(gè)。攜手英特爾神經(jīng)擬態(tài)研究社區(qū),英特爾正致力于開(kāi)拓類腦AI前沿技術(shù),以將其從技術(shù)原型轉(zhuǎn)化為業(yè)界領(lǐng)先的產(chǎn)品。

分享到

zhupb

相關(guān)推薦